#P1015. 探险之路(road)T4
探险之路(road)T4
题目描述
在探险岛这款游戏中,有一个著名的山洞副本,里面有丰富的宝藏,吸引了许多勇者前来挑战。
不幸的是,山洞中有 N 个怪物,第 i 个怪物的防御力为 Ai,奖励值为 Bi。
M 个勇者依次前来挑战。假设一位勇者初始的战斗力为 X,当他的战斗力大于怪物的防御力 Ai 时,才可以击败它,并且获得奖励值 Bi 的战斗力提升。
幸运的是,每位勇者都深知自己的战斗力不一定充足,所以进入山洞后会在战斗前进行训练,来提升战斗力。并且勇者都很聪明,每位勇者都可以选择任意顺序来击败怪物,但一个怪物只能被击败一次。
具体来说:假设训练总天数为 n,勇者第 i 天的战斗力提升为 min(i,n-i+1) 。
因为勇者都希望自己能尽快穿越山洞,请你帮助每位勇者计算他最少训练多少天可以击败所有怪物?
你可以认为不同勇者之间是互相独立的,副本中的怪物会重新恢复状态。
输入描述
第一行 1 个正整数 N,表示怪物的数量。
第二行 N 个正整数 A1,A2,……,AN,即每个怪物的防御力。
第三行 N 个正整数 B1,B2,……,BN,即每个怪物的奖励值。
第四行 1 个正整数 M,表示有 M 个勇者前来挑战。
接下来 M 行,每行输入 1 个正整数 X,表示这名勇者的初始战斗力值。
输出描述
输出 1 行 M 个整数,表示每名勇者最少需要训练的天数。
3
4 8 2
1 1 1
3
1
5
4
4 2 3
3
10 100 100
10 20 30
3
4
100
50
18 0 12
数据范围
【样例说明】
样例 1 中,一共有 3 位勇者前来挑战。
• 第一位勇者锻炼4天,攻击力为1+1+2+2+1=7,然后可以击败所有怪物。
• 第二位勇者锻炼 2 天,攻击力为 5+1+1=7,可以击败所有怪物。
• 第三位勇者锻炼 3 天,攻击力为 4+1+2+1=8,可以击败所有怪物。
【数据范围】
对于 50%的数据,1≤N,M≤100,1≤X,Ai,Bi≤100 ;
对于 100%的数据,1≤N,M≤2×10^5,1≤X,Ai,Bi≤10^9;